On the establishment, persistence, and inevitable extinction of populations.

نویسندگان

  • Kais Hamza
  • Peter Jagers
  • Fima C Klebaner
چکیده

Comprehensive models of stochastic, clonally reproducing populations are defined in terms of general branching processes, allowing birth during maternal life, as for higher organisms, or by splitting, as in cell division. The populations are assumed to start small, by mutation or immigration, reproduce supercritically while smaller than the habitat carrying capacity but subcritically above it. Such populations establish themselves with a probability wellknown from branching process theory. Once established, they grow up to a band around the carrying capacity in a time that is logarithmic in the latter, assumed large. There they prevail during a time period whose duration is exponential in the carrying capacity. Even populations whose life style is sustainble in the sense that the habitat carrying capacity is not eroded but remains the same, ultimately enter an extinction phase, which again lasts for a time logarithmic in the carrying capacity. However, if the habitat can carry a population which is large, say millions of individuals, and it manages to avoid early extinction, time in generations to extinction will be exorbitantly long, and during it, population composition over ages, types, lineage etc. will have time to stabilise. This paper aims at an exhaustive description of the life cycle of such populations, from inception to extinction, extending and overviewing earlier results. We shall also say some words on persistence times of populations with smaller carrying capacities and short life cycles, where the population may indeed be in danger in spite of not eroding its environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-lag in extinction dynamics in experimental populations: evidence for a genetic Allee effect?

1. Propagule pressure, i.e. the number of individuals introduced, is thought to be a major predictor of the establishment success of introduced populations in the field. Its influence in laboratory experimental systems has however been questioned. In fact, other factors involved in long-term population persistence, like habitat size, were usually found to explain most of the dynamics of experim...

متن کامل

Predicting patterns of long-term adaptation and extinction with population genetics.

Population genetics struggles to model extinction; standard models track the relative rather than absolute fitness of genotypes, while the exceptions describe only the short-term transition from imminent doom to evolutionary rescue. But extinction can result from failure to adapt not only to catastrophes, but also to a backlog of environmental challenges. We model long-term adaptation to long s...

متن کامل

Post-Release Dispersal in Animal Translocations: Social Attraction and the “Vacuum Effect”

Animal translocations are human-induced colonizations that can represent opportunities to contribute to the knowledge on the behavioral and demographic processes involved in the establishment of animal populations. Habitat selection behaviors, such as social cueing, have strong implications on dispersal and affect the establishment success of translocations. Using modeling simulations with a tw...

متن کامل

Jumping species—a mechanism for coronavirus persistence and survival

Zoonotic transmission of novel viruses represents a significant threat to global public health and is fueled by globalization, the loss of natural habitats, and exposure to new hosts. For oronaviruses (CoVs), broad diversity exists within bat populations and uniquely positions them to seed future emergence events. In this review, we explore the host and viral dynamics that shape these CoV popul...

متن کامل

Temporal autocorrelation can enhance the persistence and abundance of metapopulations comprised of coupled sinks.

In spatially heterogeneous landscapes, some habitats may be persistent sources, providing immigrants to sustain populations in unfavorable sink habitats (where extinction is inevitable without immigration). Recent theoretical and empirical studies of source-sink systems demonstrate that temporally variable local growth rates in sinks can substantially increase average abundance of a persisting ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of mathematical biology

دوره 72 4  شماره 

صفحات  -

تاریخ انتشار 2016